The pericardium (: pericardia), also called pericardial sac, is a double-walled sac containing the heart and the roots of the great vessels. It has two layers, an outer layer made of strong inelastic connective tissue ( fibrous pericardium), and an inner layer made of serous membrane ( serous pericardium). It encloses the pericardial cavity, which contains pericardial fluid, and defines the middle mediastinum. It separates the heart from interference of other structures, protects it against infection and blunt trauma, and the heart's movements.
The English name originates from the Ancient Greek prefix peri- (περί) 'around' and the suffix -cardion (κάρδιον) 'heart'.
The same mesothelium that constitutes the serous pericardium also covers the heart as the epicardium, resulting in a continuous serous membrane onto itself as two opposing surfaces (over the fibrous pericardium and over the heart). This creates a pouch-like potential space around the heart enclosed between the two opposing serosal surfaces, known as the pericardial space or pericardial cavity, which is filled with a small amount of serous fluid to lubricate the heart's movements and cushions it from any external jerk or shock.
The visceral serous pericardium extends to the root of the great vessels and joins the parietal serous pericardium at the anatomical base of the heart. This junction occurs at two areas: the ventricular outflow tracts where the aorta and pulmonary trunk leave the heart, and the inflow tracts where the superior/inferior vena cava and enter the heart. The root of the great vessels and the associated reflections of the serous pericardium creates various smaller sacs and tunnels known as pericardial sinuses, as well as significant pericardial recesses, where pericardial fluid can pool and mimic mediastinal lymphadenopathy.
Fluid can build up within the pericardial space, referred to as a pericardial effusion. Pericardial effusions often occur secondary to pericarditis, kidney failure, or and frequently do not cause any symptoms. Large effusions or effusions that accumulate rapidly can compress the heart and restrict diastolic ventricular filling in a condition known as cardiac tamponade, causing pulsus paradoxus and potentially fatal circulatory failure. Fluid can be removed from the pericardial space for diagnosis or to relieve tamponade using a syringe in a procedure called pericardiocentesis. For cases of recurrent pericardial effusion, an operation to create a hole between the pericardial and pleural spaces can be performed, known as a pericardial window or pericardiostomy.
The congenital absence of pericardium is rare. When it happens, it usually occurs on the left side. Those affected usually do not have any symptoms and they are usually discovered incidentally. About 30 to 50 percent of the affected people have other heart abnormalities such as atrial septal defect, patent ductus arteriosus, bicuspid aortic valve, and lung abnormalities. On chest X–ray, the heart looks posteriorly rotated. Another feature is the sharp delineation of pulmonary artery and transverse aorta due to lung deposition between these two structures. If there is partial absence of pericardium, there will be bulge of the left atrial appendage. On CT and MRI scans, similar findings as chest X–ray can be shown. The left sided partial pericardium defect is difficult to see because even a normal pericardium is difficult to be seen on CT and MRI. A complete pericardial defect will show the heart displaced to the left with part of the lungs squeezed between inferior border of heart and diaphragm.
==Additional images==
Anatomical relationships
Function
Clinical significance
-
- Wright's stain.]]
External links
|
|